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Size and shape effects on diffusion and absorption of colloidal particles near a partially

absorbing sphere: Implications for uptake of nanoparticles in animal cells

Wendong Shi, Jizeng Wang, Xiaojun Fan, and Huajian Gao™
Department of Engineering, Brown University, Providence, Rhode Island 02912, USA
(Received 9 April 2008; published 16 December 2008)

A mechanics model describing how a cell membrane with diffusive mobile receptors wraps around a
ligand-coated cylindrical or spherical particle has been recently developed to model the role of particle size in
receptor-mediated endocytosis. The results show that particles in the size range of tens to hundreds of nano-
meters can enter cells even in the absence of clathrin or caveolin coats. Here we report further progress on
modeling the effects of size and shape in diffusion, interaction, and absorption of finite-sized colloidal particles
near a partially absorbing sphere. Our analysis indicates that, from the diffusion and interaction point of view,
there exists an optimal hydrodynamic size of particles, typically in the nanometer regime, for the maximum
rate of particle absorption. Such optimal size arises as a result of balance between the diffusion constant of the
particles and the interaction energy between the particles and the absorbing sphere relative to the thermal
energy. Particles with a smaller hydrodynamic radius have larger diffusion constant but weaker interaction with
the sphere while larger particles have smaller diffusion constant but stronger interaction with the sphere. Since
the hydrodynamic radius is also determined by the particle shape, an optimal hydrodynamic radius implies an
optimal size as well as an optimal aspect ratio for a nonspherical particle. These results show broad agreement
with experimental observations and may have general implications on interaction between nanoparticles and

animal cells.
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I. INTRODUCTION

We have been studying the size effects in receptor-
mediated endocytosis based on the mechanics of cell adhe-
sion [1,2]. The objective of this research is to understand
mechanisms by which nanomaterials might enter into human
or animal cells, a significant issue for the development of
gene and drug delivery tools [3,4] as well as for assessing the
potential hazard of nanotechnology on ecology and human
health. One example is carbon nanotubes which have re-
cently been explored as molecular transporters. It has been
shown that some functionalized carbon nanotubes can enter
cells without apparent toxicity [5,6]. In general, animal cells
can internalize extracellular materials via endocytosis, a term
used to describe a number of cellular uptake mechanisms
including phagocytosis, pinocytosis, clathrin-dependent
receptor-mediated endocytosis, and clathrin-independent en-
docytosis [7,8]. The smallest particles near atomic dimension
can enter cells through direct transmembrane diffusion or via
protein channels. Larger particles can enter cells via a mem-
brane wrapping mechanism with or without clathrin or ca-
veolin coats. Still larger particles can be ingested via phago-
cytosis, a process driven by the actin myosin cortex in
phagocytosis competent cells such as macrophages or
amoeba. Particles on the order of several tens of nanometers
are known to be most efficiently taken up via receptor-
mediated endocytosis. Research on endocytic pathways is of
significance not only to the understanding of hazardous ef-
fects of viruses and nanoparticles in general but also to the
development of efficient gene and drug delivery systems
[3,4].
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The mechanism of virus budding on a host membrane has
also been investigated in a number of theoretical and experi-
mental studies. Lerner et al. [9] examined a number of rate-
limiting processes in virus budding and argued that a non-
zero spontaneous membrane curvature may be necessary to
ensure a budding time consistent with experimental observa-
tions. Simons and Garoff [10] considered wrapping of viral
capsid via thermal fluctuations of the membrane. Statistical
models [11,12] have provided significant insights into the
virus budding problem, including the relationship between
the volume concentration of internalized particles and the
budding time [11,12]. Deserno and Gelbart [13] conducted a
variational analysis of the overall shape of a small particle in
contact with a large vesicle based on the balance between
adhesion energy and elastic energy of the system under the
constraint of a fixed volume. The dynamic process of a lipid
membrane wrapping around a particle via ligand-receptor in-
teractions has been modeled based on the mechanics of cell
adhesion [1]. Sun and Wirtz [14] studied the equilibrium
engulfment depth as a particle is taken in by the cell.

Experimental studies on targeted drug delivery into cells
have shown that endocytosis is strongly size dependent and
that there exists an optimal size for the delivery process
[15-18]. Theoretical studies [1,19] have also shown that, as a
cell membrane wraps around a ligand-coated cylindrical or
spherical particle via receptor-mediated endocytosis, there
exists an optimal particle size for the fastest particle entry:
Very small particles are impeded by the high cost of elastic
energy associated with the required high curvature of cell
membrane and very large particles are impeded by the lim-
ited number of receptors as well as the large distances over
which receptors must travel to the wrapping site; only par-
ticles in the size range of tens to hundreds of nanometers
enter cells most efficiently. It has also been demonstrated that
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the particle shape can play a significant role in cellular up-
take and release. Chithrani and Chan [18] reported that cells
take up nanospheres more efficiently than nanorods. These
authors found that, in comparison with the uptake of 74
X 14 nm rod-shaped gold nanoparticles, HeLa cells, an im-
mortal cell line used in medical research, can absorb 500%
more of spherical Au nanoparticles with diameter 74 nm and
375% more of those with diameter 14 nm. Geng et al. [20]
found that the circulation of polymer filaments was strongly
dependent on the preinjection length. For filaments shorter
than 8 wm, the circulation time was found to increase with
the length of the filaments and those longer than 8 um all
persisted in the circulation for about one week, which is
about tenfold longer than their spherical counterparts.
Before physically entering a cell, particles undergo ran-
dom Brownian diffusion in the vicinity of the cell surface.
The present paper is aimed to develop a model to understand
the size and shape effects associated with this preentry stage.
For this purpose, the problem of diffusion, interaction, and
absorption of random colloidal particles near a partially ab-
sorbing sphere [Fig. 1(a)] is studied with an aim to investi-
gate the effects of particle size, the shape, the viscosity of
solvent, and the number of discrete absorption patches on the
uptake process. In several aspects, this problem has similar-
ity to that of ligand molecules diffusing and binding to re-
ceptor molecules on a cell surface, for which a number of
theoretical models have been developed in the past. Smolu-
chowski [21] considered diffusion-controlled rates of ligands
binding to receptors on the surface of a spherical cell under
perfectly absorbing boundary conditions, i.e., the reactant
concentration was assumed to be zero at the cell surface.
Berg and Purcell [22] derived a stationary solution for bind-
ing of ligands on a cell surface with no interactive potential
but covered with uniform or discrete patches of receptors.
Delisi and Wiegel [23] studied the effects of nonspecific in-
teractive forces and the number of receptors on the rates of
ligand-receptor interactions. Smoluchowski’s theory was
later generalized to partially absorbing boundary conditions
[24] assuming that the flux is proportional to the reactant
concentration at the cell surface. Taking into account the par-
tially absorbing boundary condition and the nonspecific in-
teractive forces, Shoup and Szabo [25] developed a more
general model which recovers the results of Berg and Purcell
[22] and those of Delisi and Wiegel [23] in special limits.
Zwanzig [26] considered the effects of cooperative interfer-
ence between receptors and extended the Berg-Purcell theory
to a sphere partially covered by receptors and obtained re-
sults in excellent agreement with relevant numerical simula-
tions [27]. While these studies have provided significant in-
sights into the processes of diffusion and reaction of
receptor-ligand interaction, none of them addressed the inter-
actions between finite-sized colloidal particles and a cell.
Motivated by recent experimental observations on the ef-
fects of particle size and shape in endocytosis, we have stud-
ied how a cell membrane with diffusive mobile receptors
wraps around a ligand-coated cylindrical or spherical particle
[1]. In the present paper, we report further progresses on
modeling the interaction of colloidal particles with a partially
absorbing spherical cell. Before docking on the cell mem-
brane, the particles are assumed to diffuse in a potential field
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FIG. 1. (Color online) Schematic illustrations of (a) uptake of
finite-sized cylindrical particles with hydrodynamic radius a by a
partially absorbing sphere of radius R. (b) The particle-cell interac-
tion potential as a function of particle-cell separation for different
particle sizes. (c) The depth of the primary potential well of the
particle-cell interaction as a function of the normalized particle size
under parameters A=12zJ, ¢=0.5 nm, 2=10 nm, =5 nm, R
=5 um, kgTy=4.1 zJ (room temperature).

U characterizing the cell-particle interaction [Fig. 1(b)]. The
number of particles per unit volume is assumed to be con-
stant in the far field, and a stationary diffusion problem is
formulated to determine the distribution of particle density
and the rate of entry at the cell surface. We show that there
exists an optimal hydrodynamic radius of particle, typically
in the nanometer regime, for the maximum rate of particle
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absorption. These effects are interpreted as a result of bal-
ance between the diffusion constant of the particles and the
interaction energy between the particles and the cell relative
to the thermal energy. Particles with smaller hydrodynamic
radii have larger diffusion constant but weaker interaction
with the cell while larger particles have smaller diffusion
constant but stronger interaction with the cell. Since the hy-
drodynamic radius is determined by both shape and size of a
particle, an optimal hydrodynamic radius implies an optimal
size as well as an optimal aspect ratio for a nonspherical
particle.

II. DIFFUSION OF FINITE-SIZED PARTICLES
NEAR AN ABSORBING CELL

Consider a population of particles of hydrodynamic radius
a diffusing in a potential field U around a spherical cell of
radius R [Fig. 1(a)]. The particle concentration 7 is assumed
to be n., far away from the cell. In the presence of a concen-
tration gradient and a cell-particle interaction potential U, the
diffusional flux j(r,7) in the radial direction, defined as the
number of particles crossing a unit area per unit time, can be
written as

j=DZ+ 22 (1)

where r is the radial coordinate with origin located at the
center of the cell, ¢ is the friction coefficient, and D(r)
=kgT/ { is the diffusivity; kg is Boltzmann’s constant and 7 is
the absolute temperature. For particles diffusing at low Rey-
nolds numbers in a medium of viscosity 7, the friction coef-
ficient can be estimated from Stokes’ law as {=6m7na [27].
As the particles approach the cell surface, the friction coef-
ficient is expected to rise and usually expressed as a function
of position as

{={(r) =6mnae(r), (2)

where ¢(r) is a correction factor which can be taken as [27]

9( a 1 a |
¢(r)=[l_§(r—R)+5<r—R>] ’ ®)

The hydrodynamic radius a is determined by both size and
shape of a particle. For a spherical particle, the hydrody-
namic radius « is just the radius of sphere but for a cylindri-
cal particle with diameter d and length L, it is [28]

3 1/3 L
a=L<—2> 1.009 + 1.395 X 1072 ln(—>
16(L/d) d

L\? L\?
+7.880 X 1072 In| = | +6.04 X 1072 In| = (4)
d d

in the range of aspect ratios 0.1 <L/d<<30.

Now consider a steady-state diffusion problem in which
the particle concentration is assumed to remain constant at
every point in space. In this case, the total number of par-
ticles diffusing across a closed surface around the cell per
unit time is a conserved constant which can be calculated as
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on &Un>. (5)

=47} = 477r2(D— +—=

or  or

In other words, ® is the total flux towards the cell which, in

the present stationary problem, should be a constant indepen-

dent of both r and 7. Solving Eq. (5) for the particle density
distribution n(r) under the condition n=n., at r=c0 leads to

n(r) =n.. exp( _kU¥)>
B
D (— U(r)) f e (exp[U(r')/kBT]>d ,
4 xp kgT , r?D(r") "

(6)

The cell-particle interaction potential U(r) is discussed in
the Appendix. Figure 1(b) plots U(r) as a function of sepa-
ration, s=r—R—a, between a particle at r and the surface of
the cell for different particle sizes normalized by the cell
radius. Typically, there exist two minima and one maximum
for U(r) as a function of r. The primary minimum point s
=s, of U(r) corresponds to the particle in real contact with
the cell surface where some absorption mechanism such as
receptor-mediated endocytosis is assumed to begin. Figure
1(c) indicates that the depth of the primary potential well
scales approximately linearly with the size of the particle. To
reach the primary potential well, a particle must diffuse over
an energy barrier from the far field. We adopt the partially
absorbing boundary condition [25] for the particle flux

d = Bng, (7)

where n, is the particle concentration at s=s, (cell surface)
and B is the absorption coefficient with the dimension of
nm?/ns. Inserting Eq. (7) into Eq. (6) while setting r=R+a
+s,. gives the particle concentration at the cell surface as

[ (Um> B[ (exp[U(r')/kBT]) ,]“
ng=ne| exp| —— | + — — s jdr' |,
kpT) A7) pigas, r'*D(r")
(8)

where U,,=U(R+a+s,) is the depth of the primary well of
the particle-cell interaction. Since ® is the number of par-
ticles crossing the cell surface per unit time, we can combine
Eqgs. (2), (7), and (8) to define the rate of absorption as

1 U
d=n, —exp( m)
B kgT

Jam f*‘” (cp(r’)exp[U(r')/kBT]) dr,]“_ o)

12
2 kBT R+a+s, r

The absorption coefficient 8 can be calculated as
B=cVyt,, (10)

where ¢ is the fraction of particles at the cell surface which
successfully enter (or exit) the cell, V,~8maR? is the vol-
ume of the surface layer that contains the particles ready to
be taken into the cell, and ¢,, is the average time for a particle
to be absorbed into the cell, which will be discussed below.
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FIG. 2. (Color online) Schematic illustration of particle absorp-
tion into a cell via receptor-mediated endocytosis. (a) An initially
flat membrane containing diffusive receptor molecules wraps
around a ligand-coated cylindrical particle. The receptor density
distribution in the membrane becomes nonuniform upon ligand-
receptor binding; the receptor density is depleted in the near vicinity
of the binding area and induces diffusion of receptors toward the
binding site. (b) The normalized wrapping time t,,/(B/& D) versus
the normalized particle length L/R with B=20, er; =15, D,
=102 nm?/s, & =5X10%/um?, &=5X10?/um? for wrapping a
cylindrical particle into an infinite membrane.

III. ABSORPTION TIME OF PARTICLES AT CELL
SURFACE

In calculating the average time of particle absorption into
the cell, we extend our previous study on receptor-mediated
endocytosis [1] and consider the interaction between a single
particle and an initially flat membrane, as shown in Fig. 2(a).
In order to retain the simplicity of an analytical treatment of
the problem, we model the process of membrane wrapping
around a cylindrical particle as an expansion of an effective
contact area of receptor-ligand adhesion on a flat membrane.
In this study, we neglect possible crowding and packing ef-
fects associated with sufficiently large particles. The exact
geometry of membrane wrapping around a cylindrical par-
ticle is only taken into account in the free-energy function.
We assume that the ligands are immobile and uniformly dis-
tributed on the particle surface, whereas the receptors are
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mobile and undergo rapid diffusive motion in the plane of
the cell membrane. Before contact with the particle, the re-
ceptors are assumed to be uniformly distributed on the cell
membrane with density &, Once the particle contacts the
cell, the receptor density within the contact area is raised to
the level of ligand density & on the particle surface and
receptors outside of the contact area will diffuse to the wrap-
ping site driven by a local reduction in free energy due to
ligand-receptor binding, as shown in Fig. 2(a). We assume
that the ligand density & is constant and independent of the
size and shape of the particle, in agreement with experimen-
tal observations [29]. The size of the contact area 7/(¢)? in-
creases with time ¢ as more and more receptors are captured.
The wrapping process begins at x=0, =0 and ends when the
total area of contact reaches that of the particle.

The analysis below closely follows our previous study [1]
which has been adapted for the present problem described in
Fig. 2(a). The receptor density &(x,¢) is determined from the
diffusion equation

0&(x,1)

p =D, V2é(x,1), (1) <x<o, (11)

where D, is the diffusivity. For the wrapping process, the
initial condition is

€060 = & (12)
and the boundary conditions are
g(x’ t) - go,
jxt) =0, asx— oo, (13)

where j denotes the flux of receptors on the cell membrane.
The solution to the above equation is

2
g(x3t):§O+AEl(Ept>9 (14)
where
E\(2) = f o (15)
.ou

is the exponential integral function and A is a constant of
integration.

The number of receptors passing through the adhesion
front should be equal to that increased in the contact area
during the wrapping process. For local conservation of re-
ceptors at the adhesion front a(z), we have

2ma(§é, — €.)da=—-2maj,dt, ons=a(l), (16)

where a(z) is the half-width of the contact region and &,
=¢&(a*,1), j,=j(a",1) denote values of receptor density and
flux directly in front of the contact edge. Therefore,

(§L - §+)a +j+ =0,

Substituting the solution in Eq. (14) into the receptor con-
servation condition in Eq. (17) gives the equation

on s=alt). (17)
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2
[gL - & —AEI(Z(;)[ )]d(t) + if(‘—ge—m/‘*mz =0 (18)

which can be satisfied only if
a(r) = 2a\Dr, (19)

where « is called the “speed factor.” Inserting Eq. (19) into
Eq. (18) gives the constant A,

2
_ a (fL—fo) - (20)
?E (d?) - e

To determine the speed factor, we consider local balance
of free energy at the adhesion front a(z) [1],

1
27Ta<§LeRL - EBKI% + &, 1In ? - & In %)da =2maj, x.dt,
0 0

21)

where ey is the normalized energy of a single receptor-
ligand bond, In & /&, and In &/ &, are the normalized free
energy per receptor associated with the loss of configura-
tional entropy of the bound receptors and free receptors
(treated as an idea gas in the membrane plane), respectively,
BK}ZJ/ 2 is the normalized elastic bending energy of the mem-
brane wrapping around a spherical with radius of curvature
kp=1/2d, BkgT being the bending modulus and

x(s,1) =1In(§/&) + 1 (22)

is the normalized local chemical potential of a receptor. The
free energy considered in Eq. (21) consists of the energy of
receptor-ligand binding, the configurational entropy of recep-
tors, and the elastic energy of the cell membrane. This form
of free-energy function is similar to that of a curved cell
membrane in adhesive contact with a flat substrate [30,31].
Substituting Eq. (22) into the energy conservation relation
in Eq. (21) gives the following energy conservation equation

[1]:

1 &
éLeRL__BKf)_len_L+§L_§+=O- (23)
2 &,
Substituting Egs. (14), (19), and (20) into the energy con-
servation Eq. (23) yields an equation to determine the speed
factor «a,

1
er.= 5 Br/é=f(a) ~In fl@) - 1, (24)
where
- (1= HE (a?)
=g+ — 25
fla) =+ ’E(a?) —e™® >
and §= &/ &L

Once « is known, the particle wrapping time is obtained
as
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al

=—. 26
2()(2Dp (26)

wl?=2mal or t,

For a given diameter of cylindrical particle, the speed factor
a is a constant and the wrapping time t,, increases linearly
with the length of the particle, as shown in Fig. 2(b).

We note that similar derivations can also be made for the
release of particles from inside of the cell.

IV. OPTIMAL SIZE AND SHAPE FOR MAXIMUM
RATE OF PARTICLE ABSORPTION

To understand the above diffusion-absorption model, let
us first consider two simple cases for which the solutions can
be written in closed form. First, let us consider the case when
there is no long-range interaction between the particles and
the cell, i.e., U(r)=0. For simplicity, we will also neglect
possible corrections to the diffusion constant due to the cell
wall, i.e., ¢(r)=1, and use the fact that the cell size R is
typically much larger than the effective particle size a. In this
case, the absorption rate in Eq. (9) is simplified to

_ 1, _38a m)_ 1, 3am
CD|U:0_H°°/(B+2(R+a)kBT) "”/(/3+2RkBT)'
(27)

In general, the absorption coefficient 8 and the solvent vis-
cosity n can vary with particle size and temperature. How-
ever, we will later show that the main results in this paper are
not sensitive to B and . For the time being, we will assume
that B8 and 7 are constants independent of the particle size
and temperature. In this case, the absorption rate in Eq. (27)
is a monotonically decreasing function of the effective par-
ticle size a, indicating that, in the absence of particle-cell
interaction, the absorption process is dominated by the dif-
fusivity of the particles: Particles with smaller a have larger
diffusion constant, hence higher rates of absorption.
Next we consider a square interactive potential

rsR+a+s,

U(r) = {_ [ (28)

0, r>R+a+s,

where vy is assumed to be a constant independent of particle
size and temperature. [This is correct to a first approximation
for more realistic potential discussed in the Appendix; see
Fig. 1(b)]. In this case, carrying out the integral while taking
¢(r)=1 in Eq. (9) leads to

el
D=n,) —exp| — |+
B kpT

- ya S 1 -!
X| exp + .
kgT ) (R+a)(R+a+s;) R+a+sg

(29)

3a n
2 kgT

In general, the cell size R is much larger than both the effec-
tive particle size a and the interaction range s,. Neglecting
higher-order terms in a/R and dy/R in Eq. (29) yields
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(Dznm/[lexp(— ﬂ)+3ﬂ}. (30)
B kyT) " 2RkyT

In comparison with Eq. (27), this equation contains an expo-
nential term that depends on the size of the particle. It can be
easily shown that Eq. (30) exhibits a maximum value at

* 2yR
(ﬂ) =1n(—7 ) (31)
kgT 3nB
corresponding to an optimal effective particle size
kgT [ 2yR
at =2~ ln<L> (32)
Y \3nB

for the maximum rate of particle absorption.1

It is interesting to note from Eq. (31) that the optimal
effective particle size and the optimal temperature depends
logarithmically on the absorption coefficient B, the solvent
viscosity 7, and the cell size R, hence quite insensitive to the
values of these parameters. Taking typical values #
=1mPs, B=0.5nm?ns"!, R=5 um, kzT=4.12zJ (room
temperature), and y € [0.4 pN,4 pN] would give an optimal
particle size in the range of [10 nm, 100 nm]. This insensi-
tivity may have important implication for interactions be-
tween particles and cells, and may have played an essential
role in virus evolution. The effective viscosity of cell cyto-
plasm depends strongly on the size of the particle: For par-
ticles with hydrodynamic radii smaller than 1 nm, the cyto-
plasm behaves similar to water; for particles of a few
nanometers in size, its effective viscosity rises to a few times
that of water; for particles in the size range from a few tens
to a few hundred nanometers, the effective viscosity is 2 to 3
orders of magnitude higher than that of water; the entire cell
behaves as though its viscosity were one-million times that
of water [32]. It seems important that the optimal particle
size for endocytosis should be insensitive to detailed absorp-
tion mechanisms and solvent viscosity. Most viruses and bio-
particles that go through cellular transport do exhibit charac-
teristic sizes in the size range from a few tens to a few
hundreds of nanometers.

In the case of nonspherical particles, shape will directly
influence the hydrodynamic radius a and the rate of absorp-
tion ®. As an example, substituting Eq. (4) into Eq. (30)
yields the rate of absorption as a function of the diameter d
and the aspect ratio L/d for cylindrical particles. We estimate
B according to Eq. (10) with the particle absorption time t,,
given in Eq. (26). Figure 3 shows that for certain diameter d
there exists unique aspect ratio L/d corresponding to a maxi-
mum rate of absorption under parameters y=0.5 pN, 7
=l mPs, R=5pum, kzT=4.12z], B=20, ep =15, D,
=10% nm?/s, & =5X10%/ um?, &=5X%10%/ um?.

In the following, we will numerically confirm that these
results remain valid for more realistic modeling of particle-
cell interaction discussed in the Appendix. The absorption

lEquation (31) also suggests that there exists an optimal tempera-
ture for absorption of particles of a given size. Since most biologi-
cal processes occur under the physiological temperature, we do not
explore this issue further.
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FIG. 3. (Color online) The normalized absorption rate versus the
diameter and aspect ratio of cylindrical particles under the particle-
cell interaction potential in Eq. (28): (a) Three-dimensional plot and
(b) contour plot. The values of parameters are chosen as 7y
=0.5 pN, R=5 um, kpTo=4.1 zJ, B=20, eg =15, D,=10% nm?/s,
£ =5%X10%/ um?, and & =5 X 10%/ um?.

coefficient B is estimated according to the expression 3
=cV,/t,, where c is the fraction of particles at the cell sur-
face which successfully enter (or exit) the cell, 7, is the
average time for a particle to be absorbed into the cell and
Vy~8maR? is the volume of the surface layer that contains
the particles ready to be taken into the cell. Typical values
for the parameters are chosen as A=12 zJ, 0=0.5 nm, h
=10 nm, =5 nm, R=5 um, kzTy=4.1 2] (Ty=297 K), 7
=1 mP s, B=20, eg; =15, D,=10> nm?*/s, & =5 X 10°/ um?,
and &=5X10%/um?. The normalized particle absorption
and release rates are determined from Eq. (9) and plotted in
Fig. 4(a) as a function of the normalized particle radius a/R,
with result showing that, in consistency with the simple so-
lution for square interaction potential given in Eq. (32), there
exists an optimal particle size for the fastest absorption or
release rate. For the chosen parameters, this optimal size is
a*=35 nm for particle uptake, in good agreement with ex-
perimental observations that particles with radii smaller than
50 nm are preferable for drug delivery [4].

For the more realistic particle-cell interaction potential,
Fig. 4(b) plots the optimal particle size as a function of the
uptake fraction c. Figure 4(b) confirms that, in consistency
with the simple solution for the square potential given in Eq.
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fraction c. (c) The three-dimensional plot of the normalized absorption rate of cylindrical particles as a function of particle diameter and
aspect ratio. (d) The contour plot of the normalized absorption rate of cylindrical particles as a function of particle diameter and aspect ratio.
The chosen parameters are A=12 zJ, 0=0.5 nm, h=10 nm, =5 nm, R=5 um, kzTy=4.1 zJ, n=1 mPs, B=20, eg; =15, D, =10 nm?/s,

& =5%10% um?, and &=>5X 10?/ um?. In (a) c=0.5.

(32), the optimal particle size depends logarithmically on the
uptake fraction c.

For cylindrical particles, substituting Eq. (4) into Eq. (30)
yields the rate of absorption as a function of both diameter d
and aspect ratio L/d. Tt can be seen from Figs. 4(c) and 4(d)
that for certain diameter d there exists a unique aspect ratio
L/d for the maximum rate of absorption.

V. DISCUSSIONS

An important criterion for evaluating the robustness of a
physical model is how sensitive the main conclusions are to
the assumptions made. For the present model, Fig. 5(a)
shows the normalized absorption rate versus the normalized
particle radius with typical parameter values A=12 zJ], o
=0.5nm, =10 nm, {=5nm, R=5 um, kzTy=4.17J, 5
=1 mPs, ¢=50%, B=20, eg =15, D,=10* nm*/s, & =5
X 103/ um?, &=5X 10%/ um?, as well as the behavior under
the same parameter choices except we take 7,=20 s to be
independent of the particle size. Comparison between the
result based on ¢, calculated from Eq. (26) and #,=20 s
shows that the optimal particle size and the aspect ratio do

not depend sensitively on the specific model of how particles
are absorbed into the cell.

Based on Eq. (32) and the numerical result, it is found
that the normalized optimal particle radius can be approxi-

mately expressed as
Yy )
nB

where y=U,,R/(kzTya), and p,, p, are positive constants. In
the case of the simple square potential in Eq. (28), p;
=1, p,=2/3. For more realistic interaction potential, the
constants p; and p, can be numerically determined. For the
particle-cell interaction potential discussed in the Appendix,
we have 7=1.136 X 103, and the constants p,, p, are found to
be p;=1.0127, p,=1.8745 for particle uptake and p,
=0.9999, p,=0.7651 for particle release. Based on experi-
mental [7] and numerical results [1], typical range of the
dimensionless parameter 78/kgT, is estimated to be
1B/ kT, €[0.006,0.18] for particle uptake and #5B/kgT,
€[1.50,50] for particle release. Therefore, our analysis in-
dicates that the optimal particle size vary in a relatively nar-

@ _pT

33
R, (33)
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FIG. 5. (Color online) Comparison of (a) the normalized absorption rate versus the normalized particle radius and (b) the optimal particle
size versus the uptake fraction ¢, when the particle absorption time ¢,, is taken from Eq. (26) and taken to be a constant equal to 20 s. (c)
Three-dimensional plot of the normalized absorption rate of cylindrical particles with different diameters and aspect ratios and contour plot
of (d) the normalized absorption rate of cylindrical particles with different diameters and aspect ratios. The values of parameters are chosen
as A=12 zJ, 0=0.5 nm, h=10 nm, =5 nm, R=5 um, kzTy=4.1 zJ, p=1 mPs, and 8=0.5 nm?ns™!, and ¢=0.5.

row range from tens to hundreds of nanometers for very
broad ranges of the dimensionless parameter 78/kgT.

For 7B/kgTy e (80,+), the optimal particle size is
smaller than 10 nm. For 8/kzT, € (1.0 X 1077,80), the op-
timal particle size ranges from 10 to 100 nanometers. For
7B/ kT, € (0,1.0X 1077), the optimal particle size is larger
than 100 nm. Experiments [32] show that, for many kinds of
cells, the viscosity of cytoplasm depends on the particle size
and is tens to thousands times greater than water, corre-
sponding to 7B/kzT, € (80, +x) for typical properties in the
cell interior. In this case, the optimal particle size is smaller
than 10 nm and, for particles larger than 10 nm, the smaller
the particle size, the faster the diffusion-attachment process,
in good agreement with experimental observations [17,18].
The limiting case of 8— o corresponds to the perfectly ab-
sorbing boundary condition [22], in which case the
absorption-release rate is a decreasing function of particle
size: The smaller the particle size, the faster the diffusion-
attachment process.

Another parameter of considerable uncertainty is ¢, which
represents the fraction of particles in contact with the cell
that are actually absorbed by the cell. Figure 5(b) shows that
the optimal particle size depends logarithmically on ¢, in

consistency with the simple solution given in Eq. (32). We
have further tested various forms of the particle-cell interac-
tion potential including those with (a) no energy barrier, (b)
one or more energy barriers, and (c) oscillatory force law
[33]. The results (omitted here) indicate that the optimal size
range of tens to hundreds of nanometers for the maximum
absorption rate holds for rather general forms of the particle-
cell interaction potential.

The existence of an optimal particle size and an optimal
shape in the present problem can be understood from the
point of view of competition between diffusion kinetics and
thermodynamic driving force. Increasing the particle size
tends to decrease the diffusion constant but increase the
depth of the potential well relative to kzT. This competition
leads to an optimal particle size at the maximum absorption
rate. Increasing the temperature in cellular environment
tends to increase the diffusion constant but decrease the
depth of potential well in relative proportion to kz7, which
leads to an optimal temperature.

We have also considered particle absorption at discrete
absorption patches on the cell surface. For particle diffusion
to N disklike absorbers of radius b that are distributed on the
sphere, the diffusion currents to each absorber should be ap-
proximately equal, such that [23,25]
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D =NByn, (34)

where S, is the absorption coefficient for a single absorber.
In this case, the total absorption rate of the cell can be writ-
ten as

1 U
d=n,| — exp(—m>
NB, S P\ kT

e (" (¢<rf>exp[g<r'>/k3ﬂM”.
2 kgT '

R+a+s, r

(35)

For the square interaction potential in Eq. (28) with constant
B, and ¢(r)=1, the optimal particle size in the case of N
disklike absorbers is

kgT 2vR
a*=-2- ln( Y ) (36)
Y 37NBy

We see that the optimal particle size shows logarithmic de-
pendence on, hence insensitive to, the number of absorbers
N. In numerical analysis of the influence of the number of
absorbers N on the optimal particle size, we estimate 3, ac-
cording to

Bb=cvb/tw’ (37)

where V,=2mab? and t,, is the particle absorption time taken
to be t,=20 s. Other parameter values are taken to be A
=127zJ), 0=0.5nm, A=10 nm, {=5nm, R=5 um, kgT,
=4.12J, »=1 mPs, ¢=0.5 in Eq. (37). Figure 6(a) plots the
optimal particle size as a function of the number of absorbers
for two different absorber radii 5=150 and 250 nm. In con-
sistency with Eq. (36), the optimal particle size shows loga-
rithmic dependence on the number of absorbers, N.

Berg [34] defined Ny, as the number of absorbers at which
the diffusion current reaches one-half of its maximum value
for binding between ligands and receptors which partially
cover the cell surface. These authors found that this number
is surprisingly small so that only a relatively small fraction
of the cell surface need be covered by receptors for efficient
binding. In our problem, we can likewise define N, as the
number of absorbers at which the rate of particle absorption
reaches one-half of its maximum value. We find that

2 3a<7]:8b> ( Um)
Ny=| —+—\| —|exp| - —
Ny 2 \kgT kT

+00 ’ ' -1
y J (cp(r JexplU(r )/kBT]) dr,} )

12
R+a+ts, r

where Ny=4(R+a)?/b* is the total number of absorbers
when the cell surface is fully covered with absorbing
patches. Figure 6(b) shows the half-absorption number N,,, as
a function of the particle size a, with absorber radius taken to
be b=250 nm. The results plotted in Fig. 6(b) show that,
while the particle-cell interaction potential has negligible ef-
fect on very small particles, it has surprisingly large effect on
N, for particle radii larger than 30—40 nm. For larger par-
ticle sizes, only a few absorbers are needed to achieve one-
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FIG. 6. The effects of discrete absorber disks on the cell surface.
(a) The optimal particle size versus the number of absorbers N. (b)
The number of absorbers, N;,, at which the absorption rate reaches
one-half of its maximum value versus the particle radius a. The
values of parameters are chosen as A=12zJ, ¢=0.5nm, h
=10 nm, 6=5 nm, L=5 um, kgTy=4.1zJ, »=1 mPs, 1,=20 ns,
and ¢=0.5. In (a) »=150 nm, »=250 nm, and in (b), b=250 nm.

half of the maximum absorption rate. This may also have
played an important role in the natural selection of viruses.

VI. CONCLUSIONS

In this paper, we have developed a diffusion-absorption
model for describing diffusion, interaction, and absorption of
finite-sized colloidal particles near a partially absorbing
sphere. The objective of the study is to understand the basic
mechanisms in uptake and release of nanoparticles in animal
cells. The analysis indicates that there exists an optimal par-
ticle size, typically in the nanometer regime, as well as an
optimal shape for the maximum rate of particle absorption
and release. Such optimal size and shape have been inter-
preted as a result of competition between diffusion kinetics
and thermodynamic driving force. Increasing the particle
size tends to decrease the diffusion constant but increase the
depth of the potential well relative to kg7, leading to an
optimal particle size at the maximum absorption rate. These
results show broad agreements with experimental observa-
tions and may have general implications on the interactions
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between animal cells and nanoparticles.

Among the results reported in the paper, it is particularly
interesting that the optimal particle size and shape are found
to be rather insensitive to the absorption coefficient, the sol-
vent viscosity 7, and the cell size R. This insensitivity may
have played an important role in virus evolution. The absorp-
tion coefficient can vary in a wide range depending on the
specific mechanism(s) of uptake or release. The solvent vis-
cosity could differ by 2-3 orders of magnitude inside and
outside a cell, depending on the particle size. On the other
hand, most viruses and bioparticles that go through cellular
transport have characteristic sizes in the range of tens to
hundreds of nanometers. It is therefore important that the
optimal particle size and shape for endocytosis should be
quite insensitive to specific absorption mechanisms and sol-

vent.
APPENDIX

Typical interactions between a particle and a cell include
the van der Waals (VDW) force, the Born repulsive force,
and the steric repulsive force induced by the glycocalyx on
the outer cell membrane.

The VDW force is a class of long-range attractive forces
arising from fluctuations in the electric dipole moments of
molecules. For the particle-cell interaction shown in Fig. 1,
the energy of VDW force may be written according to the
Hamaker—de Boer approximation [35] as

A [ Ra 2Ra
6[s>+2s(R+a) s*+2s(R+a)+4Ra

( s+ 2s(R+a) )
In| — s
s°+2s(R+a)+4Ra
where A is called the Hamaker constant.
The Born repulsive force measures the short-range mo-
lecular interaction resulting from the overlap of electron
clouds. For the present particle-cell interaction problem, the

Born repulsion energy can be derived based on the 6-12
Lennard-Jones potential as [35]

M\ o\°1
N HE
10!/\R/

" (—,ﬁ—m\— Dpw—6(N>=7N+1)
(w=1+N)
P+ TN =Du—-6(N=TN+1)
+ 7
(u+1-)\)
LB 2ETN+ D+ 6(N2+ TN+ 1)
(w+1+N)7
wW=TN+Dp+6(\>+7N+1)
(p=1-N\)
where N=a/R, u=(R+a+s)/R, and o is the interatomic
separation at which the LJ potential equals zero.
The outer cell membrane is usually coated with a
5—15 nm thick layer of glycocalyx which acts as a barrier to

particle-cell and cell-cell interaction [8,36,37]. The glycoca-
lyx layer consists of lipids with carbohydrates as hydrophilic

PC  _
Uypw =-

(A1)
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head groups (glycolipids) and can be modeled as a hydrated
layer of long-chain polymer molecules grafted at one end to
the bilayer [38]. As the particle approaches the polymer-
coated cell membrane, the polymer layer is compressed and
some of the solvent is squeezed out of the particle-cell gap,
resulting in a repulsive interaction due to unfavorable en-
tropy associated with the confined polymer chains.
Interactions between polymer-coated surfaces can be
modeled by the scaling theory of Alexander [39] and De
Gennes [40], giving rise to the following repulsion energy

[41]:
U OCkBTh i<ﬁ>5/4+i<£>w4
Glyeo ™53 7 5\ s 7\n) |’

where £ is the thickness of glycocalyx (h/2 for particle-cell
interaction) and & is the mean distance between the points of
attachments of the grafted polymer chains.

For particle-cell interaction, we use the Derjaguin ap-
proximation [33] which gives the interaction force F g?yco be-
tween a particle and a cell in terms of the potential per unit
area between two flat surfaces at the same separation, d. This
yields the particle-cell interaction potential due to glycocalyx
as

(A3)

PC PC
UGlyco( ) f FGlyco

2
=f (RWRa[UGlyco(x) UGlyco(h)]>dx

Ra hz{ ( )1/4 1(s>11/4
= kB - e
R +a o 5\ 11\h
3 ( s) 21]
+2\ 7 -7 )
S\hn/) 11
where C is a constant.

Summing Egs. (A1), (A2), and (A4) leads to the net in-
teraction potential U= U5+ UrC + Ug(fyco, which is a func-
tion of the separation distance s and somewhat similar to the
spherical effective potential of water [42]. The above equa-
tions show that U depends on a number of parameters in-
cluding the Hamaker constant A, the glycocalyx’s thickness
h, the grafted polymers’ distance s, the radii L and a, as well
as the temperature 7. Figure 1(b) plots the normalized net in-
teraction potential as a function of the normalized separation
for different values if the normalized particle radii is a/R. It
can be seen from Fig. 1(b) that the interaction between par-
ticles and the cell becomes negligible in the far field.

In addition to VDW, Born, and steric forces, there exist
also other kinds of forces in a biological system including,
for example, electrostatic and double-layer forces, hydration
and hydrophobic forces, bridging and depletion forces, en-
tropic protrusion and undulation forces, etc. [33,43].
Through extensive numerical analysis, we found that further
consideration of these forces do not alter the main conclusion
of the paper with respect to the existence of an optimal par-
ticle size and an optimal temperature for the maximum par-
ticle absorption-release rate.

(Ad)
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